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Outline
• Motivations behind Mixed-Mode Surveys
• Typical Assumption in Mixed Mode Surveys: All yp p y

modes produce correct data (no Mode Effects)
– Mode effects confounded with mode choice
– Existing Methods

• Proposed Imputation Methods to assess and p p
adjust for mode effects

• Simulation Study Results
• Conclusions and Current Research
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Mixed-Mode Surveys - MotivationsMixed Mode Surveys Motivations
• Decreasing response rates (Curtin, Presser, & Singer, 

2005; de Leeuw 2005; de Leeuw & de Heer 2002;2005; de Leeuw, 2005; de Leeuw & de Heer, 2002; 
Steeh, Kirgis, Cannon, & DeWitt, 2001)

• Increasing survey costs (Groves & Heeringa, 2006)
• Better understanding of measurement properties 

(Tourangeau  & Smith, 1996)
T d i t h l• Trends in technology use 
– 17% of cell-owner adults use their cell-phones to go online  

in the U.S. (Pew Center, Cell Internet Use Survey, 2012 )( y )
– Increasing trends in computer use, Internet access and 

Broadband Internet access rates (U.S. Census Bureau, 
2011)2011)
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Mode Effects
• Single-mode surveys:

– Differences in overall results: Mode effects are part of trade-off 
analysis, no assumption about the ignorability of mode effects

• Mixed-mode surveys:
A ti N d ff t– Assumption: No mode effects

• Social desirability bias: Respondents are more likely to 
misreport their statuses  on sensitive topics  conditioned on 
their status in the presence of an interviewer  (Tourangeau  & 
Smith, 1996; Tourangeau & Yan, 2007) 

• In-person respondents may be more immune to social 
desirability tendencies  (Holbrook, Green, & Krosnick, 2003)

• E.g., Income is a sensitive topic in the U.S. (Moore, Stinson 
& Welniak, Jr, 2000), also an observable characteristic
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Mode Effects in Mixed-Mode Surveys

– Mode choice: Nonrandomized Mode 
AssignmentAssignment
• E.g., Respondents with higher education 

are more likely to respond in telephoneare more likely to respond in telephone 
mode than in in-person compared to 
respondents who have less than a 12th 
Grade education (CPS, March 2012)

– Mode effects are confounded by mode 
choice in mixed-mode surveysy
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Existing Methods to Assess Mode EffectsExisting Methods to Assess Mode Effects

• Randomization and control other error sourcesRandomization and control other error sources 
(Jäckle, Roberts, & Lynn, 2010; Biemer, 2001)
• Assign modes randomly

• Comparison to a single mode survey 
(Vannieuwenhuyze, Loosveldt, & Molengberghs, 
2010; 2012)
• Mixture distribution
• Representativity assumption• Representativity assumption
• Limited to two modes
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Existing Methods to Adjust for Mode 
Eff tEffects

• Calibrate the mode proportions to fixedCalibrate the mode proportions to fixed 
proportions (Buelens & VandenBrakel, 2011)
• Include mode in the calibration estimator
• Does not eliminate bias, instead aim to calibrate bias to 

yield unbiased change estimates

• Selection models (Cobben 2009; Cobben• Selection models (Cobben, 2009; Cobben, 
Schouten, & Bethlehem, 2006)
• Include the sequential nature of mode choice inInclude the sequential nature of mode choice in 

nonresponse weights
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Measurement Error Model 
f Mi d M d Sfor a Mixed-Mode Survey

( )( )     y X R B R B( )( , )     j j jT jT jI jI jy X R B R B

R R f,jT jIR R : indicator variables for response mode

( ) ( ; )  R jT j jR g X gMode choice

( )( , )  j jX
j j j

,jT jIB B : mode effects

Alt ti l TB Z B TB Z B

Mode effects
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Population Mean Ignoring Mode Effects

Phase 1 Phase 2 Complete

YT (Telephone) YI (In‐person) Y

RT RT
RI RII I
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j U j U
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Telephone respondents
Inperson respondents



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U
U

0[ ] ( )  M UY Y gB a weighted average of 
telephone and in-

9

person mode effects



Alternatively, Multiple Imputation Method
Phase 1 Phase 2

YT (Telephone) YI (In-person)
R NRRT NRI

NRT RI

*
TY *

IY
* *1 [ ]

 

  
T I

T j jT
j U j U

Y y y
N

* *1 [ ]
 

  
I T

I j jI
j U j U

Y y y
N

*[ ]   M I T jTY Y B *[ ]   M I I jIY Y B
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How to Combine Mode-Specific Estimates?o to Co b e ode Spec c st ates

* * *(1 )   T IY Y Y 0 1 

Empirical Alternative Combination Methods:

1Method 1 ( ) – Simple average estimator:CM

T I

1Method 1 ( ) Simple average estimator:
1
2

 

CM

2Method 2 ( ) – Weighted inversely according to the variancesCM2

* *

Method 2 ( )  Weighted inversely according to the variances 
                                   of the estimated means                                                          : 

1 1
( ) (

 
P P

CM

Var Y Var Y )
P( ) (P PVar Y Var Y )

3Method 3 ( ) –  Weighted inversely according to the 
                                   mean square errors of the estimated means:

CM

* *
1 1
( ) ( )

  P
P PMSE Y MSE Y 11



Evaluate Alternative Combination Methods and 
C ti M th dCompeting Method 

* *

*RelBias
 

   
 

lCM
Y Y

Y Y

where l=1,2,3 is the combination methods

0 Y Y0
_

0
RelBias

 
  
 

MODES IGNORED
Y Y

Y
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Simulation Study Description
• Simulation study: Total Family Income

– Create hypothetical populations using Current 
Population Survey (CPS) 1973 and Social SecurityPopulation Survey (CPS), 1973, and Social Security 
Records: Exact Match Data

• CPS  March Supplement
– Rotating panel survey
– Produces data on the U.S. labor force

Th t ti h f ll 4 8 4 tt– The rotation scheme follows a 4-8-4 pattern 
– The majority of first and fifth waves are in-person 

interviews
– For the other waves, respondents are given the choice 

to do the interview by telephone or in-person visits
M j it f i t i f th th– Majority of interviews from the other waves are 
telephone
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Simulation Study Description

– Total Family Income is constructed by 
summing up eight income types as reported in g p g yp p
CPS over the household head and spouse

– The data exclude the records with item 
missing in any of the CPS income type and 
CPS Total Family Income 

– Top-coded income values are excluded
– Adjusted Gross Income (AGI) as matched 

f IRS d d b h kfrom IRS records  used as benchmarks
• Since Received Welfare Amount is not reported in 

as part of AGI a control variable is used in theas part of AGI, a control variable is used in the 
models to reflect the differences in the income 
constructs 14



Simulation Study Description

– X covariates: Race-ethnicity, Living Quarters 
Type, Region, Industry Type, Job Type,Type, Region, Industry Type, Job Type, 
Spouse Work Status, Presence of Children, 
Respondent Status of Householder

– Regression analysis suggests that there are g y gg
not differences between modes for this subset

• Distribution is skewed for whites (94%), laborer 
(5%)(5%)
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Hypothetical Populations

    AGIAGI
Ij jY Y

Varying Mode Effects:

Ij jY Y
    AGIAGI

Tj jY Y

•Beta constant for in-person varies between 0.1-2.0 based on AGI

•Corresponds to Relative Bias of (-0.9 to 1)

Varying Goodness of Model Fit :

   ˆˆ  Y Y
j jjY X e

 2iid
 
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Simulation Study Results: Relative Biases, Fixed Mode 
Choice
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Simulation Study Results: Relative Biases, Variable 
Mode Choice 
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Conclusions and Current ResearchConclusions and Current Research

• Possible severe bias in traditional method

• Evaluation of model assumptionsEvaluation of model assumptions
– Feasibility

• Alternatively, sensitivity analyses can be 
d t d i th b f b h kconducted in the absence of benchmarks
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Bias of Sample Mean in Mixed-Mode 
SurveysSurveys
Measurement error model:

 2
, ,, ,  ~ (0, )  i i p g i p g iy B i U       

Sample mean:
n

The bias of :

1
n

iiy y n 
yThe bias of      :

, ,p g p gg P B
y

, ,p g p gg
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Simulation Study: Total Family Income
Hypothetical Populations - Varying mode 
ff teffects

iP iY AGI

   0.97
(0.1, 0.97, 2.0

Telephone

Inperson





   
   
   

where i represents a respondent
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Simulation Study: Total Family Income
Hypothetical Populations - Varying modeHypothetical Populations Varying mode 
effects
beta inperson=0 7 beta inperson=1 4beta_inperson=0.7 beta_inperson=1.4
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Simulation Results – Evaluation of 
Combination MethodsCombination Methods

• Including item missing in imputation yields g g p y
– Larger absolute relative bias on the average
– Larger variationLarger variation

• Combination method 3 outperforms the• Combination method 3 outperforms the 
competing method using deterministic 
regression model but not in stochasticregression model, but not in stochastic 
regression model simulations
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Imputation Model: Ignorable Mode 
Eff t C ti V i blEffects - Continuous Variables
Normal Linear Regression Model:

2~ ( , ) jT jY N X

Assuming the standard noninformative prior distributionAssuming the standard noninformative prior distribution 

2
1Pr( , | ) 


X 2 2ˆ ˆ( | , ) ~ ( , ( ) )    y MVN V


1ˆ ( )  T TX X X Ywhere,
1ˆ( ) ( )  TV X X,and

2 2 2Pr( | ) ~ ( )  y Inv n k s andPr( | ) ~ ( , ) y Inv n k s

2 1 ˆ ˆ( ) ( )   


Ts y X y X
n k

,and
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Imputation Model: Nonignorable -
S l ti M d l C ti V i blSelection Models – Continuous Variables
A model for the mode choice mechanism:

1( ) ( )Pr( 0 | , ; ) 1 exp( )  


      
RR R

jT j jT jjR X Y X Y

( ) ( ) ( ) 2

A complete data model:

( | ; ) ( )  Y Y YY X N X( ) ( ) ( )( | ; ) ~ ( , )  jT j jY X N X

( ) ( )
1 1( , | , ) ( )


 


  

 
Y Y

j j
f ll T

Y X
L Y RjT

( ) ( )

( ) ( )

( , | , ) ( )  
1 exp( )

1 1(1 ) ( )

 
  







 
    


 



 

T

full T R R
j U jj

Y Y
j j

L Y RjT
X Y

Y X
dy

( ) ( )
                             (1 ) ( )

1 exp( )    

 
    

 
R

jR R
j U jj

dy
X Y
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Subset of Current Population Survey (CPS), 1973, and 
Social Security Records: Exact Match Datay

The mode distribution shifts across the month in 
sample as expected (n=15,999)

M d M1 M2 M3 M4 M5 M6 M7 M8Mode M1 M2 M3 M4 M5 M6 M7 M8

Telephone 2% 34% 60% 66% 6% 53% 63% 65%

In person 98% 66% 40% 34% 94% 47% 37% 35%In‐person 98% 66% 40% 34% 94% 47% 37% 35%

Overall: 56% in-person, 44% telephone
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Hypothetical Populations Income Means-
Varying mode effectsVarying mode effects

    AGIAGI
Ij jY Y 0 10000 20000 30000

0.1

Beta constant for in-

0.2
0.3
0.4
0.5
0.6

    AGIAGI
Tj jY Y

person varies 
between 0.1-2.0 
based on AGI

0.7
0.8
0.9

0.97
1.1

Telephone
In-person

Corresponds to 
Relative Bias of (-0.9 
to 1)

1.2
1.3
1.4
1.5
1.6to 1)

The higher mean for 
telephone 

1.7
1.8
1.9

2
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Simulation study 1: Household 
IncomeIncome

Varying goodness of model fit

 2~ 0,
iid

je N c
   ˆˆ  Y Y

j jjY X e  ,jj jj

c(0.5,10,15)

where i represents a respondent
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Alternatively, Multiple Imputation MethodAlternatively, Multiple Imputation Method
Phase 1 Phase 2

Y (Telephone) Y (In person)Y1 (Telephone) Y2 (In-person)
RT NRI

NRT RI

• A special case of a missing data problem
• Impute data for each phase through a series of multiple 

imputation models as if all units had reported in that particularimputation models as if all units had reported in that particular 
mode

• Impute nonrespondent data for Telephone and In-person 
phases via multiple imputation modelsphases via multiple imputation models

• X covariates in the models are combination of personal and 
residential data (such as age, gender, etc.)
Continuous variable: Normal linear regression model• Continuous variable: Normal linear regression model, 
noninformative prior distribution. 
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